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New era of computational beam modeling

• Traditional accelerator physics modeling
– Strong inhomogeneity (strong focusing, cavities,

multipactoring)
– Approximate approaches to self consistency (none,

beam-frame electrostatics, beam-beam kicks)
• Traditional plasma modeling

– Strong self-fields (LWFA, PWFA)
– Boundaries distant

• New modeling developments combine these
capabilities to bring self-consistent modeling of
plasma in the presence of  complex structures.
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Progression of modeling

Test particles in structures
(tracking, multipactoring)

Beam-frame electrostatics
(no structures)

Wake fields in structures

Self-consistent, 
fully EM in structures

Parallel computations

Accurate parallel
algorithms

Advances in hardware



4

Basic problem is charged particles
moving self-consistently in EM fields

• Maxwell

• Particles drive EM

• Particle dynamics from EM
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Yee: 2nd order accurate spatial
differentiation

• At the midpoint

• Leads to special layout
of values in a cell

• Yee mesh gives 2nd
order accuracy of spatial
derivatives
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Second-order in time by leap frog

• Time centered differences give second order accuracy in Δt
• Can get time-collocated values by half-stepping in B
• Similar for E update, except c2 factor
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Computing particle-particle interactions is
prohibitive

• Coulomb interaction leads to Np
2 force

computations

• Lenard-Weichert (retarded potentials) - worse due
to need to keep history
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Particle In Cell (PIC) reduces to Np scaling

• Particle contributions to
charges and currents are
added to each cell: O(Np)
operations

• Forces on a particle are
found from interpolation of
the cell values: O(Np)
operations
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Finding the force: interpolation (gather)
• Linear weighting for each

dimension
– 1D: linear
– 2D: bilinear = area weighting
– 3D: trilinear = volume weighting

• Force obtained through 1st
order, error is 2nd order

• For simplicity, no loss of
accuracy, weight first to nodal
points

Ex,yeeEx,yee
Ex,node
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Parallelism: domain decomposition

Domain 1

Domain 2

Domain 3

Domain 4

• Communication is expensive
• Global communication is really expensive
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Overlap of communication and
computation needed for speed

• Non overlap algorithms:
– Compute domain
– Send skin (outer edge)
– Receive guard
– Repeat

• For local algorithms,overlap
– Compute skin
– Send skin
– Compute body
– Receive guard
– Repeat

Skin
Guard

Body
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Local update algorithms scale very well
to large numbers of processors

VORPAL scaling on Seaborg (IBM SP3)
• Strong scaling, 10,000x400 continually subdivided
• Similar behavior on 1,500x300x300

– (135M cells, 0.5 B particles)
• Propagation to 1 mm (20,000 steps) in 30-40 hours with

2000 SP3 or 400 POWER V.
• Parallelism depends on surface to volume ratio
• All computations for recent LWFA were of this type
• 2×1013 particle-time-steps or 1014 cell-time-steps (no

particles) routine
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To investigate without construction, need
to apply methods to

High-gradient

ILC (Tesla)
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How can we apply massive computation
to complex shapes?

• Local algorithms (no Poisson solves, no global
matrix inversions)

• Accurate for complex shapes
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Early, stair-step boundary conditions gave
unacceptable computational errors

• N (L/Δx) cells in each direction
• Error of (Δx/L)3 at each surface cell
• O(N2) cells on surface
• Error = N2(Δx/L)3 = O(1/N)

120x24x24 = 71,424 cells
= 215,000 degrees of freedom
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Modes computed with combination of FFT
and fitting

• Spherical cavity
• Resonant current

driver
• FFT measurement

of frequency, for
accuracy by fitting
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Convergence studies confirm result,
indicate modeling problem

• Stair-step error is 10-4

at 5000 cells per
dimension, error linear
with cell size

• 1011 cells for 3D
problem

This approach will not give answer even on large, parallel
hardware
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Resurgence of regular grids: cut cells give
same accuracy as finite elements

• For cells fully interior, use
regular update

• For boundary cells:
– Store areas and lengths
– Update fluxes via

– Update fields via
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Cut-cell boundary conditions accurately
represent geometry

• Tesla 2000 cavities
• 312x56x56 (106) cells
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Dey-Mittra (1997) cut-cells allow 10-5

accuracy
• Fewer than 107 cells

for cavity modeling at
one part in 105

• Implementation exists
now in VORPAL

• No significant
additional
computational cost

Richardson extrapolation does even better,
10-5 accuracy with 60 cells across
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Cut-cell methods allow us to model
accelerator systems self-consistently and

electromagnetically

• SRF accelerating cavities, crab cavities, etc.
– Before: compute wake fields, get

impedances, apply engineering rules
– Now: model the full, multi-bunch problem

• SRF guns
– Before: field is composed of rf mode (ignore

others) and self-fields, ignore wake fields
– Now: model to full cavity problem
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Regular, structured grids allow for self-
consistent integration of particles

Wakefield for Tesla cavities computed by VORPAL in 3D
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Crab cavity generation, visualization,
computation of splitting

• CAD representations
• Python coding of shapes
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Self-consistent EM gun simulations in
complex cavities

• Image charges
during beam
emission

• Wakes from
constrictions
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Verification by comparison of beam
energy with Parmela shows consistency

• D. Dimitrov (Tech-X), D. Kayran (BNL) + collaborators
• Parmela has beam-frame electrostatics
• VORPAL is fully electromagnetic, 3300x180x180, 100M cells
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Simulation results indicate electromagnetics
playing a role in emittance

• VORPAL results converged
• 200M cell runs completed
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Each new study inspires capability, brings
requests

• Laser-plasma: self-consistency, parallelism
– Higher-order particle shapes
– Reduced models

• Accelerating cavities: shape modeling
– Higher-order field to particle near walls
– Resistive walls for complex shapes
– Implicit EM solvers, variable grids

• Electron guns, cavities, high-gradient
– Better emission models, esp. for conformal boundaries
– Multipactoring
– Heat deposition computations
– Microphonics!

• Dielectric systems
– Complex photonic band-gap systems

• Beam quality
– Collisions

• Crab cavities
– Notch filters, LOM couplers
– Variable grids
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ILC end-to-end presents incredible
challenges

• Transverse ratio = 10 cm/10 nm = 106

• Longitudinal ratio = 20 km long/1 mm = 2×106

• Courant limit would give T/Δt = 2×106

• Multiply by number of bunches by 300
• Composite of 1.2×1027 cell-time-steps (1014 is routine)
• Need to overcome disparity of 4×1013

But there is a plan
• Implicit solvers increase Δt by 105

• Reduced model buys 300
• Moving window gives another factor of 2×104

• Still need increase by 100 in capability: doable
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Summary
• Self-consistent EM modeling has progressed

– High-performance, self-consistent computations
– Accurate treatment of boundaries
– Secondary emission
– Absolutely stable charge-conserving algorithm

• Remain algorithm needs
– Conformal resistive walls

• Remain implementation needs
– Surface resistance
– Dark currents
– Photonic emission
– Absolutely stable charge-conserving algorithm

• Remains work in simulation setup (GUI’s?)
– Defines cavity shapes
– Define particle beams


